Noise Folding based on General Complete Perturbation in Compressed Sensing

نویسندگان

  • Limin Zhou
  • Xinxi Niu
  • Jing Yuan
چکیده

This paper first present a new general completely perturbed compressed sensing (CS) model y=(A+E)(x+u)+e,called noise folding based on general completely perturbed CS system, where y ∈ Rm, u ∈ Rm, u 6= 0, e ∈ Rm, A ∈ Rm×n, m ≪ n, E ∈ Rm×n with incorporating general nonzero perturbation E to sensing matrix A and noise u into signal x simultaneously based on the standard CS model y=Ax+e. Our constructions mainly will whiten the new proposed CS model and explore into RIP, coherence for A+E of the new CS model after being whitened. Index Terms Compressed Sensing(CS), general perturbation, restricted isometry property(RIP), coherence

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frames for compressed sensing using coherence

We give some new results on sparse signal recovery in the presence of noise, for weighted spaces. Traditionally, were used dictionaries that have the norm equal to 1, but, for random dictionaries this condition is rarely satised. Moreover, we give better estimations then the ones given recently by Cai, Wang and Xu.

متن کامل

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

Robustness Analysis of a List Decoding Algorithm for Compressed Sensing

We analyze the noise robustness of sparse signal reconstruction based on the compressive sensing equivalent of a list-decoding algorithm for Reed Solomon codes the Coppersmith-Sudan algorithm. We use results from the perturbation analysis of singular subspaces of matrices to prove the existence of bounds for the noise levels (in the measurements) below which the error in the recovered signal (w...

متن کامل

Compressive Sensing Inverse Synthetic Aperture Radar Imaging Based on Gini Index Regularization

In compressive sensing (CS) based inverse synthetic aperture radar (ISAR) imaging approaches, the quality of final image significantly depends on the number of measurements and the noise level. In this paper, we propose an improved version of CSbased method for inverse synthetic aperture radar (ISAR) imaging. Different from the traditional l1 norm based CS ISAR imaging method, our method explor...

متن کامل

A Block-Wise random sampling approach: Compressed sensing problem

The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1412.8609  شماره 

صفحات  -

تاریخ انتشار 2014